Genomic analysis of rodent pulmonary tissue following bis-(2-chloroethyl) sulfide exposure.

نویسندگان

  • James F Dillman
  • Christopher S Phillips
  • Linda M Dorsch
  • Matthew D Croxton
  • Alison I Hege
  • Albert J Sylvester
  • Theodore S Moran
  • Alfred M Sciuto
چکیده

Bis-(2-chloroethyl) sulfide (sulfur mustard, SM) is a carcinogenic alkylating agent that has been utilized as a chemical warfare agent. To understand the mechanism of SM-induced lung injury, we analyzed global changes in gene expression in a rat lung SM exposure model. Rats were injected in the femoral vein with liquid SM, which circulates directly to the pulmonary vein and then to the lung. Rats were exposed to 1, 3, or 6 mg/kg of SM, and lungs were harvested at 0.5, 1, 3, 6, and 24 h postinjection. Three biological replicates were used for each time point and dose tested. RNA was extracted from the lungs and used as the starting material for the probing of replicate oligonucleotide microarrays. The gene expression data were analyzed using principal component analysis and two-way analysis of variance to identify the genes most significantly changed across time and dose. These genes were ranked by p value and categorized based on molecular function and biological process. Computer-based data mining algorithms revealed several biological processes affected by SM exposure, including protein catabolism, apoptosis, and glycolysis. Several genes that are significantly upregulated in a dose-dependent fashion have been reported as p53 responsive genes, suggesting that cell cycle regulation and p53 activation are involved in the response to SM exposure in the lung. Thus, SM exposure induces transcriptional changes that reveal the cellular response to this potent alkylating agent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study on Catalytic and Photocatalytic Decontamination of (2-Chloroethyl) Phenyl Sulfide with Nano-TiO2

Catalytic and photocatalytic reactions of (2-chloroethyl) phenyl sulfide (2-CEPS), a mimic of bis (2-chloroethyl)  sulfide (i.e. Sulfur mustard) were studied on the surfaces of titanium oxide. TiO2 nanoparticles (anatase, rutile and mixture of 80% anatase/20% rutile) along with bulk TiO2 were tested as reactive sorbents for reaction of 2-CEPS at room temperature (25±0.5°C). Reactions were monit...

متن کامل

Synthesis of MgO Nanoparticales and Identificationof Their Destructive Reaction Products by 2-Chloroethyl Ethyl Sulfide

Nanocrystalline magnesium oxides were prepared by sol–gel method and were characterized by X-ray diffraction, N2-BET, SEM and infrared spectroscopy techniques. The results confirmed the formation of Nano- MgO materials with crystallite size in range of 5-20 nm and surface areas of 336-556m2/g. The product has been tested as destructive adsorbent for the decontamination of (2-chloroethyl) et...

متن کامل

Factors influencing the inactivation of urease by alkylating agents.

In the production of biological effects such as vesication by bis-p-chloroethyl sulfide (mustard gas) it has been considered probable that inactivation of tissue enzymes is of foremost importance. In view of the reaction characteristics of bis-p-chloroethyl sulfide it has appeared likely that this inhibition is due to an alkylation reaction involving essential groups of the enzymes. Involvement...

متن کامل

A Mouse Model of Acute and Delayed Complications of Sulfur Mustard Analogue, 2-Chloroethyl Ethyl Sulfide

Background: Numerous studies have been conducted on humans, animals, and cell cultures exposed to Sulfur Mustard (SM). However, the precise mechanism and cause or long-term pattern of SM injuries are not well defined. There is no protocol available for treating people with severe eye, lung, and skin ailments. The current study aimed to develop an animal model of the acute and delayed complicati...

متن کامل

Hydrolysis of semi mustard (S.M) by MnCo2O4 (MnO-Co2O3) nanocomposite as a binary oxide catalyst: kinetics reactions study

MnCo2O4 (MnO-Co2O3) nanocomposite as a binary oxide has been successfully prepared by precipitation method using cobalt nitrate and manganese nitrate as the precursors and then characterized by scanning electron microscopy-energy dispersive micro-analysis (SEM-EDX) and X-ray diffraction (XRD) techniques. In this work, we report the hydrolysis kinetics reactions of semi mustard (chloroethyl ethy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical research in toxicology

دوره 18 1  شماره 

صفحات  -

تاریخ انتشار 2005